We are presented with a series of statements similar to the classic elimination logic puzzle, with each of the five participants giving three statements each.
The trick is that each person gives exactly one lie, akin to the icebreaker “Two Truths and a Lie”. The simplest way to solve the logic puzzle is by noting that one of Walter’s statements contradict two of Sandra’s; as such, that statement must be false. After that, each set of statements proven true end up contradicting at least one other statement; the rest is relatively simple.
House 1 | House 2 | House 3 | House 4 | House 5 | |
---|---|---|---|---|---|
Name | WALTER | RAMSEY | MARTIN | SANDRA | TURNER |
Pet | WHALES | ROBINS | FERRET | POODLE | TIGERS |
Origin | TAIPEI | MUMBAI | FRANCE | LONDON | KANSAS |
Notably, many letters happen to coincide between the names, and each name is exactly six letters long. By taking the letters which exactly two components match (two components tell the truth, and the last one lies) and ordering by street order, we get the answer WARM FRONTS.
First, we note that Walter’s second statement directly contradicts Sandra’s first and third statements. His second statement is thus false, and his first and third statements are thus true.
House | City | Pet | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | Fr | Ka | Lo | Mu | Ta | Fe | Po | Ro | Ti | Wh | ||||
Ma | ||||||||||||||||||
Ra | ||||||||||||||||||
Name | Sa | |||||||||||||||||
Tu | ||||||||||||||||||
Wa | ||||||||||||||||||
Fe | ||||||||||||||||||
Po | ||||||||||||||||||
Pet | Ro | |||||||||||||||||
Ti | ||||||||||||||||||
Wh | ||||||||||||||||||
Fr | ||||||||||||||||||
Ka | ||||||||||||||||||
City | Lo | |||||||||||||||||
Mu | ||||||||||||||||||
Ta | ||||||||||||||||||
Turner’s first statement contradicts the fact that Turner is from Kansas. Therefore, his second and third statements are true.
House | City | Pet | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | Fr | Ka | Lo | Mu | Ta | Fe | Po | Ro | Ti | Wh | ||||
Ma | ||||||||||||||||||
Ra | ||||||||||||||||||
Name | Sa | |||||||||||||||||
Tu | ||||||||||||||||||
Wa | ||||||||||||||||||
Fe | ||||||||||||||||||
Po | ||||||||||||||||||
Pet | Ro | |||||||||||||||||
Ti | ||||||||||||||||||
Wh | ||||||||||||||||||
Fr | ||||||||||||||||||
Ka | ||||||||||||||||||
City | Lo | |||||||||||||||||
Mu | ||||||||||||||||||
Ta | ||||||||||||||||||
Sandra’s first statement is contradicted, as Ramsey owns Robins. Thus, her second and third statements are true.
House | City | Pet | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | Fr | Ka | Lo | Mu | Ta | Fe | Po | Ro | Ti | Wh | ||||
Ma | ||||||||||||||||||
Ra | ||||||||||||||||||
Name | Sa | |||||||||||||||||
Tu | ||||||||||||||||||
Wa | ||||||||||||||||||
Fe | ||||||||||||||||||
Po | ||||||||||||||||||
Pet | Ro | |||||||||||||||||
Ti | ||||||||||||||||||
Wh | ||||||||||||||||||
Fr | ||||||||||||||||||
Ka | ||||||||||||||||||
City | Lo | |||||||||||||||||
Mu | ||||||||||||||||||
Ta | ||||||||||||||||||
Martin’s third statement is contradicted, as Walter is not from France. Thus, his first and second statements are true. Note that this does not say anything about Walter’s ability to own Ferrets.
House | City | Pet | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | Fr | Ka | Lo | Mu | Ta | Fe | Po | Ro | Ti | Wh | ||||
Ma | ||||||||||||||||||
Ra | ||||||||||||||||||
Name | Sa | |||||||||||||||||
Tu | ||||||||||||||||||
Wa | ||||||||||||||||||
Fe | ||||||||||||||||||
Po | ||||||||||||||||||
Pet | Ro | |||||||||||||||||
Ti | ||||||||||||||||||
Wh | ||||||||||||||||||
Fr | ||||||||||||||||||
Ka | ||||||||||||||||||
City | Lo | |||||||||||||||||
Mu | ||||||||||||||||||
Ta | ||||||||||||||||||
Neither Martin nor the person from London lives in house 5. Thus, Ramsey’s first statement is false, and his second and third statement is true.
House | City | Pet | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | Fr | Ka | Lo | Mu | Ta | Fe | Po | Ro | Ti | Wh | ||||
Ma | ||||||||||||||||||
Ra | ||||||||||||||||||
Name | Sa | |||||||||||||||||
Tu | ||||||||||||||||||
Wa | ||||||||||||||||||
Fe | ||||||||||||||||||
Po | ||||||||||||||||||
Pet | Ro | |||||||||||||||||
Ti | ||||||||||||||||||
Wh | ||||||||||||||||||
Fr | ||||||||||||||||||
Ka | ||||||||||||||||||
City | Lo | |||||||||||||||||
Mu | ||||||||||||||||||
Ta | ||||||||||||||||||
Remaining logic
House | City | Pet | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | Fr | Ka | Lo | Mu | Ta | Fe | Po | Ro | Ti | Wh | ||||
Ma | ||||||||||||||||||
Ra | ||||||||||||||||||
Name | Sa | |||||||||||||||||
Tu | ||||||||||||||||||
Wa | ||||||||||||||||||
Fe | ||||||||||||||||||
Po | ||||||||||||||||||
Pet | Ro | |||||||||||||||||
Ti | ||||||||||||||||||
Wh | ||||||||||||||||||
Fr | ||||||||||||||||||
Ka | ||||||||||||||||||
City | Lo | |||||||||||||||||
Mu | ||||||||||||||||||
Ta | ||||||||||||||||||
This one was quite fun to write. Einstein puzzles are always fun, and playing an Einstein puzzle through Two Truths and a Lie made it quite interesting.
My original idea went a bit further; the premises (e.g. every house has a unique pet) would also be Two Truths and a Lie, so one of the premises would be false. Extraction would have been quite a bit more involved. To test the idea of Two Truths and a Lie in a logic puzzle, I made a version in which the premises were all true; this actually turned out to be interesting enough for an intro round puzzle, so we decided to get rid of the harder extraction. After that, I came up with the idea of the extraction method used in the current puzzle. While it was indeed a step up from normal extraction methods, we felt it was thematic, and could serve as a nice kick to an otherwise straightforward puzzle.